On $GPW$-Flat Acts

Authors

  • Hamideh Rashidi Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.
Abstract:

In this article, we present $GPW$-flatness property of acts over monoids, which is a generalization of principal weak flatness. We say that a right $S$-act $A_{S}$ is $GPW$-flat if for every $s in S$, there exists a natural number $n = n_ {(s, A_{S})} in mathbb{N}$ such that the functor $A_{S} otimes {}_{S}- $ preserves the embedding of the principal left ideal ${}_{S}(Ss^n)$ into ${}_{S}S$. We show that a right $S$-act $A_{S}$ is $GPW$-flat if and only if for every $s in S$ there exists a natural number $n = n_{(s, A_{S})} in mathbb{N}$ such that the corresponding $varphi$ is surjective for the pullback diagram $P(Ss^n, Ss^n, iota, iota, S)$, where $iota : {}_{S}(Ss^n) rightarrow {}_{S}S$ is a monomorphism of left $S$-acts. Also we give some general properties and a characterization of monoids for which this condition of their acts implies some other properties and vice versa.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On Regularity of Acts

In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...

full text

Axiomatisability of free, projective and flat S-acts

We survey the known results characterising those monoids S such that the classes of free, projective or (weakly, strongly) flat S-acts are first order axiomatisable. The conditions on the monoid S that arise are finitary, and intricately related. We examine their inter-connections and illustrate the independence of certain pairs.

full text

A short note on strongly flat covers of acts over monoids

Recently two different concepts of covers of acts over monoids have been studied by a number of authors and many interesting results discovered. One of these concepts is based on coessential epimorphisms and the other is based on Enochs’ definition of a flat cover of a module over a ring. Two recent papers have suggested that in the former case, strongly flat covers are not unique. We show that...

full text

On the U-WPF Acts over Monoids

Valdis Laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. In this paper we introduce a new property of acts over monoids, called U-WPF which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. We also show that regu...

full text

SEQUENTIALLY COMPACT S-ACTS

‎‎The investigation of equational compactness was initiated by‎ ‎Banaschewski and Nelson‎. ‎They proved that pure injectivity is‎ ‎equivalent to equational compactness‎. ‎Here we define the so‎ ‎called sequentially compact acts over semigroups and study‎ ‎some of their categorical and homological properties‎. ‎Some‎ ‎Baer conditions for injectivity of S-acts are also presented‎.

full text

Speech Acts On Trial

In this document we discuss the applicability of speech act theory as a theoretical foundation for the design of information technology (IT). We pay special attention to the adaptation speech act theory has undergone when applied in the IT-field. One question we address concerns what happens when we import passive descriptive theories from other disciplines and use them as a basis in active des...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  25- 42

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023